
ttp/papers/working/squigol-exercises.tex

Tom Pressburger
March 27, 1989

1 Exercises

Exercise 1. De�ne P / S (read \S �ltered by P"), for a predicate P , to be the
subsequence of elements of S that satisfy P ; i.e. P/ �lters out from a given se-
quence S those elements that do not satisfy P . For example, (< 3) / [1; 2; 3; 2; 1; 3] =
[1; 2; 2; 1]. So P :�! B) P / : [�]! [�].

1. Convince yourself that P/ is a ++-homomorphism. Find � and f so that
P / s = �=f ? s.

2. For arbitrary P , Q, f , �gure out an equivalent expression for each of the
following. Make sure your answer type checks. Derive your answer using the
laws and your answer to the preceding exercise.

(a) P / P / s

(b) P / Q / s

(c) P / f ? s

3. De�ne

N =̂ [0; 1; 2; . . .]

E x =̂ 2 j x

P x =̂ 9 (i : N) i � i = x

sqr x =̂ x � x

dbl x =̂ 2 � x

The expression m j n means that m divides evenly into n; i.e. n � 0 modm.

Find an equivalent for each expression below.

(a) E /N

(b) P /N

(c) E � sqr

4. Using the results of previous exercises, derive an equivalent for P /E /N.

Exercise 2. Let MSSQ s = "=
P

? seqs s. Derive the \obvious" algorithm.

1



2 Solutions

Exercise 1.

1. Yes, P/ is a ++-homorphism because

P / (s1++s2) = (P / s1)++(P / s2): (1)

The proof of such a thing depends on how sequences are de�ned formally (as
a mapping from [1 . .#s] to values, or as the datatype generated by the free
constructor CONS), and how / was de�ned.

By our homorphism lemma, because P/ is a homomorphism, it can be written
as (�=) � (f?), where � is the right-hand side joining operation. Equation 1
above shows that � = ++. From a previous result, f = (P/) � []. Using our
intuition about / results in

f = (�x:if P x then [x] else [ ]) or, expressed functionally,
f = (P �! [];K[ ])

2. (a) P / P / s = P / s. Although this is obvious, we can try to prove it using
the de�nition of / above.

(P/) � (P/) = (++=) � f? � (++=) � f?
= (++=) � (++=) � (f?)? � f?
= (++=) � (++=) � (f? � f)?
= (++=) � (++=) � ((f?) � (P �! [];K[ ]))?
= (++=) � (++=) � (P �! (f?) � []; (f?) �K[ ])?
= (++=) � (++=) � (P �! [] � f ;K[ ])?
= (++=) � (++=) � (P �! [] � (P �! [];K[ ]);K[ ])?
= (++=) � (++=) � (P �! (P �! [] � []; [] �K[ ]);K[ ])?
= (++=) � (++=) � (P �! [] � [];K[ ])?
= (++=) � (++=)? � (P �! [] � [];K[ ])? ++= is a morphism over ++
= (++=) � ((++=) � (P �! [] � [];K[ ]))?
= (++=) � ((P �! (++=) � [] � []; (++=) �K[ ]))?
= (++=) � ((P �! [];K[ ]))?
= P/

(b) For predicates P and Q, de�ned on all of the domain of elements of s,
we have

P / Q / s = Q / P / s = (�x:P x ^Q x) / s = (P ^Q) / s:

However, if the domain of P is smaller than that of the domain of ele-
ments of s, then P / s may be meaningless, or a type error.

Proof:

(P/) � (Q/) = (++=) � fP ? � (++=) � fQ?
= (++=) � (++=) � (fP ?)? � fQ?
= (++=) � (++=) � (fP ? � fQ)?
= (++=) � (++=) � ((fP ?) � (Q �! [];K[ ]))?
= (++=) � (++=) � (Q �! (fP ?) � []; (fP ?) �K[ ])?
= (++=) � (++=) � (Q �! [] � fP ;K[ ])?
= (++=) � (++=) � (Q �! [] � (P �! [];K[ ]);K[ ])?
= (++=) � (++=) � (Q �! (P �! [] � []; [] �K[ ]);K[ ])?
= (++=) � (++=) � (Q ^ P �! [] � [];K[ ])? and as before
= (Q ^ P ) / s

2



(c) P / f ? s = f ? (P � f) / s

This transformation transposes the order of ? and /. This may be a good
idea if f is expensive and/or P is \sparse" (is rarely true), and P � f

simpli�es. See below.

Proof:

(P/) � (f?) = (++=) � (P �! [];K[ ])? � (f?)
= (++=) � ((P �! [];K[ ]) � f)?
= (++=) � ((P � f) �! [] � f ;K[ ] � f)?
= (++=) � ((P � f) �! f? � []; f? �K[ ])?
= (++=) � (f? � ((P � f) �! [];K[ ]))?
= (++=) � (f?)? � ((P � f) �! [];K[ ])?
= f? � (++=) � ((P � f) �! [];K[ ])?
= f? � (P � f)/

3. Rewrite

(a) E /N = dbl ?N

(b) P /N = sqr ?N

(c) E � sqr = E. This one requires the elementary number theory fact that
if p is a prime, then p j a � b � (p j a) _ (p j b). Then

(E � sqr) x � 2 j x � x � (2 j x) _ (2 j x) � 2 j x � E x:

4.
P /E /N = E /P /N

= E / sqr ?N

= sqr ? (E � sqr) /N
= sqr ?E /N

= sqr ? dbl ?N

= (sqr � dbl) ?N

Exercise 2. Let MSSQ s = "=
P

? seqs s. Derive the \obvious" algorithm.

The obvious algorithm is to form the sum of the positive numbers. If there are
none, then the answer is 0, because the empty sequence is considered a subsequence
of any sequence.

We can obtain a closed-form expression for the result by employing the homomor-
phism form of seqs, where seqs = (�++=) � [K[ ]; []]?.

We'll use the following lemmas.

(
P
?) � (�++=) = (�+=) � (

P
?)?P

� [] = id

("=) � (�+=) = (+=) � ("=)?
("=) � [f; g] = " �f�g

" �Kc�id = (c ")

A functional style derivation is as follows.

MSSQ = ("=) � (
P
?) � seqs

= ("=) � (
P
?) � (�++=) � [K[ ]; []]?

= ("=) � (�+=) � (
P
?)? � [K[ ]; []]?

3



= ("=) � (�+=) � ((
P
?) � [K[ ]; []])?

= ("=) � (�+=) � [
P
�K[ ];

P
� []]?

= ("=) � (�+=) � [K0; id]?

= (+=) � ("=)? � [K0; id]?

= (+=) � (("=) � [K0; id])?

= (+=) � (" �K0�id)?

= (+=) � (0 ")?

Less functionally, we have

MSSQ s = "=
P

? seqs s

= "=
P

?�++=(�x:[[ ]; [x]]) ? s

= "=�+=(
P
?) ? �x:[[ ]; [x]] ? s

= "=�+=(�x:
P

? [[ ]; [x]]) ? s

= "=�+=�x:[
P
[ ];
P
[x]] ? s

= "=�+=�x:[0; x] ? s

= +=("=) ? �x:[0; x] ? s

= +=(�x:0 " x) ? s

= +=(0 ") ? s

We could derive a version that doesn't create intermediate lists as follows, using a
singleton split.

MSSQ [ ] = +=(0 ") ? [ ] = 0

MSSQ [x]++s = +=(0 ") ? ([x]++s)

= (+=(0 ") ? [x]) + (+=(0 ") ? s)

= (0 " x) +MSSQ s

= (if 0 < x then x else 0) +MSSQ s

= if 0 < x then x+MSSQ s else MSSQ s

Or we could reason about the various cases without ever deriving the closed form
expression.

MSSQ [ ] = "=
P

? seqs [ ] = "=
P

? [[ ]] = "=[
P

[ ]] = "=[0] = 0

MSSQ [x] = "=
P

? seqs [x] = "=
P

? [[ ]; [x]] = "=[
P

[ ];
P

[x]] = "=[0; x] = 0 " x

MSSQ s1++s2 = "=
P

? seqs (s1++s2)

= "=
P

? ((seqs s1)�++(seqs s2))

= "=(
P

? seqs s1)�+(
P

? seqs s2)

= ("=
P

? seqs s1) + ("=
P

? seqs s2)

= MSSQ s1 +MSSQ s2

4



Of course, from the above equations, we see that MSSQ is a homomorphism, with
� = + and f = (0 "), hence MSSQ = (+=) � (0 ")?.

The advantage of the functional derivation is that it produces a single expression,
so that further reasoning does not necessarily require case splits. A disadvantage is
that the notation and rules are unfamiliar, and data is not named.

5


